Publications of 1989 to 1996


  • Dellnitz, Michael; Hohmann, Andreas:
    The computation of unstable manifolds using subdivision and continuation.
    Broer, H. W.; Gils, S. A. van; Hoveijn, I.; Takens, F. (eds.): Nonlinear Dynamical Systems and Chaos,
    PNLDE 19, Birkhäuser, pp. 449-459, 1996.


  • Golubitsky, Martin; Marsden, Jerrold E.; Stewart, Ian; Dellnitz, Michael:
    The constrained Liapunov-Schmidt procedure and periodic orbits.
    Fields Institute Communications 4, pp. 81-127, 1995.
  • Aston, Philip; Dellnitz, Michael:
    Symmetry breaking bifurcations of chaotic attractors.
    International Journal of Bifurcation and Chaos 5, pp. 1643-1676, 1995.
  • Dellnitz, Michael; Melbourne, Ian:
    A note on the shadowing lemma and symmetric periodic points.
    Nonlinearity 8, pp. 1067-1075, 1995.
  • Dellnitz, Michael; Field, Michael; Golubitsky, Martin; Hohmann, Andreas; Ma, Jun:
    Cycling chaos.
    IEEE Transactions on Circuits and Systems 42, pp. 821-823, 1995.
  • Dellnitz, Michael; Heinrich, Cordula:
    Admissible symmetry increasing bifurcations.
    Nonlinearity 8, pp. 1039-1066, 1995.
  • Dellnitz, Michael; Golubitsky, Martin; Hohmann, Andreas; Stewart, Ian:
    Spirals in scalar reaction-diffusion equations.
    International Journal of Bifurcation and Chaos 5, 1487-1501, 1995.


  • Dellnitz, Michael; Scheurle, Jürgen:
    Eigenvalue movement for a class of reversible Hamiltonian systems with three degrees of freedom.
    Chossat, P. (ed.): Dynamics, Bifurcation and Symmetry
    NATO ASI Series C 437, pp. 105-110, 1994.
  • Dellnitz, Michael:
    Collisions of chaotic attractors.
    Ansorge, R. (ed.): Schlaglichter der Forschung: Zum 75. Jahrestag der Universität Hamburg, pp. 411-428, Reimer, 1994.
  • Dellnitz, Michael; Golubitsky, Martin; Nicol, Mathew:
    Symmetry of attractors and the Karhunen-Loeve decomposition.
    Sirovich, L. (ed.): Trends and Perspectives in Applied Mathematics
    Applied Mathematical Sciences 100, pp. 73-108, Springer, 1994.
  • Dellnitz, Michael; Melbourne, Ian:
    Generic movement of eigenvalues for equivariant selfadjoint matrices.
    Journal of Computational and Applied Mathematics 55, 249-259, 1994.


  • Melbourne, Ian; Dellnitz, Michael:
    Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group.
    Math. Proc. Camb. Phil. Soc. 114, pp. 235-268, 1993.
  • Dellnitz, Michael; Melbourne, Ian:
    The equivariant Darboux theorem.
    Lectures in Applied Mathematics 29, pp. 163-169, 1993.
  • Barany, Ernest; Dellnitz, Michael; Golubitsky, Martin:
    Detecting the symmetry of attractors.
    Physica D 67, pp. 66-87, 1993.
  • Melbourne, Ian; Dellnitz, Michael; Golubitsky, Martin:
    The structure of symmetric attractors.
    Archive of Rational Mechanics and Analysis 123, pp. 75-98, 1993.


  • Dellnitz, Michael:
    Computational Bifurcation of periodic solutions in systems with symmetry.
    IMA Journal of Numerical Analysis 12, 429-455, 1992.
  • Dellnitz, Michael; Golubitsky, Martin; Melbourne, Ian:
    Mechanisms of symmetry creation.
    E. Allgower, K. Böhmer, M. Golubitsky (eds.): Bifurcation and Symmetry, ISNM 104, 99-109, Birkhäuser, 1992.
  • Dellnitz, Michael; Melbourne, Ian; Marsden, Jerrold E.:
    Generic bifurcation of Hamiltonian vector fields with symmetry.
    Nonlinearity 5, 979-996, 1992.
  • Dellnitz, Michael; Marsden, Jerrold E.; Melbourne, Ian; Scheurle, Jürgen:
    Generic bifurcations of pendula
    E. Allgower, K. Böhmer, M. Golubitsky (eds.): Bifurcation and Symmetry, ISNM 104, 111-122 , Birkhäuser, 1992.

Imprint | Webmaster | Recent changes: 14.05.2009