von H. Glöckner besprochene Bücher

  1. Hofmann, K H and S A Morris The Lie Theory of Connected Pro-Lie Groups, Tracts in Math 2, EMS Publishing House, Zurich, 2007; Zbl 1153.22006
  2. Wolf, J A, Harmonic Analysis on Commutative Spaces, Math Surveys and Monographs 142, AMS, 2007; Zbl 1156.22010
  3. Bertram, W, Calcul différentiel topologique élémentaire, Calvage et Mounet, 2011; Zbl 05997916

von H. Glöckner besprochene Artikel

  1. Außenhofer, L, A survey on nuclear groups, Research and Exp. in Math. 24 (2000), 1-30; MR 2002f:22001
  2. Hernandez, S, Pontryagin duality for topological Abelian groups, Math. Z. 238 (2001), 493-503; MR 2002h:22002
  3. Arhangelskii, A V, Extensions of topological and semitopological groups and the product operation, Comment. Math. Univ. Carolin. 42 (2001), 173-186; MR 2002j:22001
  4. Bruguera, M and M J Chasco, Strong reflexivity of abelian groups, Czechoslovak Math. J. 51 (2001), 213-224; MR 2002j:22002
  5. Comfort, W W and D Dikranjan, On the poset of totally dense subgroups of compact groups, Topology Proc. 24 (1999), Summer, 103-127 (2001); MR 2002k:22001
  6. Banakh, T, On index of total boundedness of (strictly) o-bounded groups, Topology Appl. 120 (2002), 427-439; MR 2003c:22003
  7. Möller, R G, Structure theory of totally disconnected locally compact groups via graphs and permutations, Canadian J. Math. 54 (2002), 795-827; MR 2003e:22003
  8. Banakh, T O, Topologies on groups determined by sequences: answers to several questions of I Protasov and E Zelenyuk, Mat. Stud.15 (2001), 145-150; MR 2003j:22001
  9. Ravsky, O V, Paratopological groups II, Mat. Stud. 17 (2002), 93-101; MR 2003j:22003
  10. Aussenhofer, L, The Lie algebra of a nuclear group, J. Lie Theory 13 (2003), 263-270; MR 2003m:22023
  11. Kaniuth, E and A T Lau, On a separation property of positive definite functions on locally compact groups, Math. Z. 243 (2003), 161-177; MR 2003k:43003
  12. Guran, I and M Zarichnyi, Universal countable-dimensional topological groups, Topology Appl. 128 (2003), 55-61; Zbl 1014.22003
  13. Milnes, P, Minimal H_3 actions and simple quotients of discrete 7-dimensional nilpotent groups, Kodai Math. J. 25 (2002), 209-226; Zbl 1019.22003
  14. Hernandez, S and S Macario, Dual properties in totally bounded Abelian groups, Arch. Math. 80 (2003), 271-283; MR 2004b:22002
  15. Möller, R G, FC^- elements in totally disconnected groups and automorphisms of infinite graphs, Math. Scand. 92 (2003), 261-268; MR 2004b:22003
  16. Willis, G A, The number of prime factors of the scale function on a compactly generated group is finite, Bull. London Math. Soc. 33 (2001), 168-174; Zbl 1020.22002
  17. Banaszczyk, W and J Nunez Garcia, Strong nuclearity of dual groups, Bull. Polish Acad. Sci. 51 (2003), 75-91; MR 2004f:22001
  18. Maier, P and K-H Neeb, Central extensions of current groups, Math. Ann. 326 (2003), 367-415; Zbl 1029.22025
  19. Neeb, K-H and C Vizman, Flux homomorphisms and principal bundles over infinite dimensional manifolds, Monatsh. Math. 139 (2003), 309-333; Zbl 1029.22027
  20. Dikranjan, D and M Tkachenko, Algebraic structure of small countably compact abelian groups, Forum Math 15 (2003), 811-837; MR 2004i:22002
  21. Gao, S and V Pestov, On a universality property of some abelian Polish groups, Fund Math 179 (2003), 1-15; MR 2004m:22004
  22. Bekka, M B and P de la Harpe, Irreducibility of unitary group representations and reproducing kernels Hilbert spaces, Expo Math 21 (2003), 115-149; Zbl 1037.22009
  23. Hofmann, K H, S A Morris and D Poguntke, The exponential function of locally connected compact abelian groups, Forum Math 16 (2004), 1-16; Zbl 1041.22005
  24. Ferri, S and D Strauss, A note on the WAP-compactification and the LUC-compactification of a topological group, Semigroup Forum 69 (2004), 87-101; MR 2005b:22002
  25. Bisgaard, T M, On the relation between the scalar moment problem and the matrix moment problem on *-semigroups, Semigroup Forum 68 (2004), 25-46; Zbl 1045.43009
  26. Hanzer, M, R-groups for quaternionic hermitian groups, Glasnik Matematicki 39 (2004), 31-48; Zbl 1056.22010
  27. Baumgartner, U and G A Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J Math 142 (2004), 221-248; Zbl 1056.22001
  28. Neeb, K-H, Current groups for non-compact manifolds and their central extensions, pp 109-183 in: T Wurzbacher (Ed), Infinite dimensional groups and manifolds, IRMA Lectures in Math. and Theor. Phys. 5, 2004 Zbl 1056.22014
  29. Amini, M and A R Medghalchi, Amenability of the algebras R(S), F(S) of a topological semigroup S, Sci Math Jpn 60 (2004), 469-473; Zbl 1058.43002
  30. Ismagilov, R S, Representations connected with Dixmier traces and spaces of distributions, Acta Appl Math 81 (2004), 121-127; Zbl 1066.43002
  31. Kumar, A and C R Bhatta, An uncertainty principle like Hardy's theorem for nilpotent Lie groups, J Aust Math Soc 77 (2004), 47-53; Zbl 1066.22006
  32. Neeb, K H and F Wagemann, The universal central extension of the holomorphic current algebra, Manuscr Math 112 (2003), 441-458; Zbl 1071.17021
  33. Wienhard, A K, Bounded Cohomology and Geometry, Bonner Math. Schriften 368, 2004; Zbl 1084.32013
  34. Neeb, K H, Abelian extensions of infinite-dimensional Lie groups, pp 69-194 in: Mathematical works. Part XV. University of Luxembourg, Mathematical Serminar, 2004; Zbl 1079.22018
  35. Filali, M and I Protasov, Slowly oscillating functions on locally compact groups, Applied General Topology 6 (2005), 67-77; MR 2006e:22007
  36. Glöckner, H, Contraction groups for tidy automorphisms of totally disconnected groups, Glasgow Math. J. 47 (2005), 329-333; Zbl 1076.22005
  37. Ardanza-Trevijano, S and M J Chasco, The Pontryagin duality of sequential limits of topological Abelian groups, J Pure Appl Algebra 202 (2005), 11-21; MR 2006f:22001
  38. Hofmann, K H and S A Morris, Lie theory and the structure of pro-Lie groups and pro-Lie algebras, Topol Proc 28 (2004), No 2, 541-567; Zbl 1082.22003
  39. Aniello, P, Square integrable projective representations and square integrable representations modulo a relatively central subgroup, Int J Geom Methods Mod Phys 3 (2006), No 2, 233-267; Zbl 1088.22002
  40. Baumgartner, U and G A Willis, The direction of an automorphism of a totally disconnected locally compact group, Math Z 252 (2006), 393-428; MR 2007a:22005
  41. Runde, V, Representations of locally compact groups on QSL_p-spaces and a p-analog of the Fourier-Stieltjes algebra, Pac. J. Math. 221 (2005), No 2, 379-397; Zbl 1095.43001
  42. Neeb, K-H and B. Orsted, A topological Maslov index for 3-graded Lie groups, J Funct Anal 233 (2006), No 2, 426-477; Zbl 1102.32010
  43. Bakonyi, M and D Timotin, A remark on positive definite functions on free groups, Demonstratio Math 39 (2006), No 2, 317-320; Zbl 1100.43002
  44. Gindikin, S, B Krötz and G Olafsson, Horospherical model for holomorphic discrete series and horospherical Cauchy transform, Compositio Math 142 (2006), 983-1008; Zbl 1108.22009
  45. Bertram, W, Differential geometry over general base fields and rings, pp 95-101 in: ``Modern Trends in Geometry and Topology'' (Deva, 2005); MR 2007h:58003
  46. Beltita, D and T S Ratiu, Geometric representation theory for unitary groups of operator algebras, Adv Math 208 (2007), 299-317; Zbl 1108.22008
  47. Kaniuth, E, Induced characters, Mackey analysis and primitive ideal spaces of nilpotent discrete groups, J Funct Anal 240 (2006), 349-372; Zbl 1107.22002
  48. Ali, Hoda A The uniform convergence of a sequence of weighted bounded exponentially convex functions on foundation semigroups, Kyungpook Math J 46 (2006), 337-343; Zbl 1110.43004
  49. Pourabbas, A, Some results on the Hochschild cohomology of group algebras, Proc Am Math Soc 135 (2007), 2095-2105; Zbl 1114.43003
  50. Tewari, U B Order convolution and vector-valued multipliers, Colloq Math 108 (2007), 53-61; Zbl 1113.43003
  51. Sahleh, H On the non-abelian tensor square and nilpotency class of a topological group, Int Rev Pure Appl Math 2 (2006), 77-84; Zbl 1119.22001
  52. Willis, G A, Compact open subgroups in simple totally disconnected groups, J Algebra 212 (2007), 405-417; Zbl 1119.22005 und MR 2008d:22005
  53. Bekka, B, Operator-algebraic superrigidity for SL_n(Z), n >= 3, Invent Math 169 (2007), 401-425 Zbl 1135.22009
  54. Wockel, C, Lie group structures on symmetry groups of principal bundles, J Funct Anal 251 (2007), 254-288 MR 2008h:22016
  55. Abouqateb, A and K-H Neeb, Integration of locally exponential Lie algebras of vector fields, Ann Global Anal Geom 33 (2008), 89-100 Zbl 1135.22021
  56. Baumgartner, U, Scales for co-compact embeddings of virtually free groups, Geom Dedicata 130 (2007), 163-175 MR 2008m:22010
  57. Sinton, A R, The spherical transform on projective limits of symmetric spaces, J Lie Theory 17 (2007), 869-898 MR 2009c:43011
  58. Beltita, D and K-H Neeb Finite-dimensional Lie subalgebras of algebras with continuous inversion, Studia Math 185 (2008), 249-262 MR 2008m:46097
  59. Shtern, AI, Duality between the compact and discrete objects for noncommutative topological groups, Adv Stud Contemp Math 16 (2008), 143-154. MR 2009c:22004
  60. Baumgartner, U, Totally disconnected, locally compact groups as geometric objects, pp 1-20 in: ``Geometric Group Theory,'' Trends in Mathematics, Birkhäuser, 2007. MR 2009d:22007
  61. Jotz, M and K-H Neeb, Closedness of the tangent spaces to the orbits of proper actions, J Lie Theory 18 (2008), 517-521; MR 2009m:22023
  62. Maresch, G and R Winkler, Compactifications, Hartman functions and (weak) almost periodicity, Dissertationes Math 461 (2009), 72 pp; MR 2010c:43009
  63. An, J and K-H Neeb, An implicit function theorem for Banach spaces and some applications, Math Z 262 (2009), 627-643; MR 2010f:22019
  64. Ferri, S and J Galindo, Embedding a topological group into its WAP-compactification, Studia Math 193 (2009), 99-108; MR 2010e:43014
  65. Shtern, AI, Finite-dimensional locally bounded quasirepresentations of connected locally compact groups: a survey, Adv Stud Contemp Math (Kyungshang) 19 (2009), 1-16; MR 2010f:22006
  66. Galindo, J, On unitary representability of topological groups, Math Z 263 (2009), 211-220; MR 2010g:22003
  67. Hofmann, KH and SA Morris, Contributions to the structure theory of connected pro-Lie groups, Topol Proc 33 (2009), 225-237; Zbl 1221.22001
  68. Mehdipour, MJ and R Nasr-Isfahani, Compact left multipliers on Banach algebras related to locally compact groups, Bull Aust Math Soc 79 (2009), 227-238; Zbl 1169.43001
  69. Hofmann, KH and K-H Neeb, The compact generation of closed subgroups of locally compact groups, J Group Theory 12 (2009), 555-559; Zbl 1179.22003
  70. Jaworski, W, On contraction groups of automorphisms of totally disconnected locally compact groups, Isr J Math 172 (2009), 1-8; Zbl 1179.22004
  71. Thom, A, Examples of hyperlinear groups without factorization property, Groups Geom Dyn 4 (2010), 195-208; Zbl 1187.22002
  72. Müller, C, K-H Neeb and H Seppänen, Borel-Weil theory for root graded Banach-Lie groups, Int Math Res Not 2010 (2010), 783-823; Zbl 1187.22017 and MR 2011g:22033
  73. Beltiţă, D, Iwasawa decompositions of some infinite-dimensional Lie groups, Trans Amer Math Soc 361 (2009), 6613-6644; MR 2010k:22027
  74. Neeb, KH and C Wockel, Central extensions of groups of sections, Ann Global Anal Geom 36 (2009), 381-418 MR 2010m:58015
  75. Müller, C and C Wockel, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv Geom 9 (2009), 605-626; MR 2010k:22026
  76. Dahmen, R, Analytic mappings between LB-spaces and applications in infinite-dimensional Lie theory, Math Z 266 (2010), 115-140; Zbl 1205.22018
  77. Dosi, AA, Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem, Izv Math 73 (2009), 1149-1171; Zbl 1209.46025
  78. Beltita, D and KH Neeb, Geometric characterization of Hermitian algebras with continuous inversion, Bull Aust Math Soc 81 (2010), 96-113; Zbl 1209.46028
  79. Buliga, M, Infinitesimal affine geometry of metric spaces endowed with a dilatation structure, Houston J Math 36 (2010), 91-136; MR 2011h:53032
  80. Neeb, KH, Semibounded representations and invariant cones in infinite dimensional Lie algebras, Confluentes Math 2 (2010), 37-134; MR 2011g:22035
  81. Neeb, KH, Semi-bounded unitary representations of infinite-dimensional Lie groups, Infinite dimensional harmonic analysis IV, 209-222, World Sci Publ, Hackensack, NJ, 2009; MR 2011g:22034
  82. Dikranjan, D and G Lukács, Quasi-convex sequences in the circle and the 3-adic integers, Topology Appl 157 (2010), 1357-1369; MR 2011g:22005
  83. Dikranjan, D and G Lukács, Locally compact abelian groups admitting non-trivial quasi-convex null sequences, J Pure Appl Algebra 214 (2010), 885-897; MR 2011g:22010
  84. Merigon, S, Integrating representations of Banach-Lie algebras, J Funct Anal 260 (2011), 1463-1475; MR 2012a:22036
  85. Galindo, J, L Recoder-Nunez and M Tkachenko, Nondiscrete P-groups can be reflexive, Topology Appl 158 (2011), 194--203; MR 2011m:22004
  86. Hekmati, P, Integrability criteron for abelian extensions of Lie groups, Proc Amer Math Soc 138 (2010), 4137-4148; MR 2012a:22034
  87. Neeb, K-H, On differentiable vectors for representations of infinite dimensional Lie groups, J Funct Anal 259 (2010), 2814-2855; MR 2012b:22031
  88. Beltita, D, Functional analytic background for a theory of infinite-dimensional reductive Lie groups, Developments and trends in infinite-dimensional Lie theory, 367-392, Progr Math 288, Birkhäuser, Boston, 2011; MR 2012a:22033
  89. Wockel, C, Non-integral central extensions of loop groups, Contemp Math 519 (2010), 203-214; Zbl 1219.22018
  90. Bingham, NH and AJ Ostaszewski, Normed versus topological groups: dichotomy and duality, Diss Math 472 (2010), 138 pp; Zbl 1231.22002
  91. Alldridge, A, Boundary orbit strata and faces of invariant cones and complex Olshanski semigroups, Trans Am Math Soc 363 (2011), 3799-3828; Zbl 1231.32014
  92. Beltita, D and JE Gale, Universal objects in categories of reproducing kernels, Rev Mat Iberoam 27 (2011), 123-179; Zbl 1234.46026
  93. Neeb, KH and H Seppänen, Borel-Weil theory for groups over commutative Banach algebras, J Reine Angew Math 655 (2011), 165-187; MR 2012f:22038.
  94. Hofmann, KH and SA Morris, The structure of almost connected pro-Lie groups, J Lie Theory 21 (2011), 347-383; MR 2012f:22037
  95. Buliga, M, A characterization of sub-Riemannian spaces as length dilation structures constructed via coherent projections, Commun Math Anal 11 (2011), 70-111; MR 2012e:53051
  96. Gimperlein, H, B Krötz, C Lienau, Analytic factorization of Lie group representations, J Funct Anal 262 (2012), 667-681; Zbl 1234.22006 und MR 2854718
  97. Galindo, J, L Recoder-Núñez, M Tkachenko, Reflexivity of prodiscrete topological groups, J Math Anal Appl 384 (2011), 320-330; MR 2825186
  98. Wockel, C, Categorified central extensions, étale Lie 2-groups and Lie's third theorem for locally exponential Lie algebras, Adv Math 228 (2011), 2218-2257; MR 2836119
  99. Gimperlein, H, B Krötz, H. Schlichtkrull, Analytic representation theory of Lie groups: general theory and analytic globalizations of Harish-Chandra modules, Compos Math 147 (2011), 1581-1607; MR 2012i:22017
  100. Laubinger, M, A Lie algebra for Frölicher groups, Indag Math 21 (2011), 156-174; MR 2012h:22024
  101. Kramer, L, The topology of a semisimple Lie group is essentially unique, Adv Math 228 (2011), 2623-2633; MR 2012j:22006
  102. Buliga, M, Braided spaces with dilations and sub-Riemannian symmetric spaces, pp 21-35 in: Geometry-Exploratory Workshop on Differential Geometry and its Applications, Cluj Univ Press, Cluj-Napoca, 2011; MR 2808410
  103. Hofmann, KH, Morris, SA, Local splitting of locally compact groups and pro-Lie groups, J Group Theory 14 (2011), 931-935; MR 2012m:22007 und Zbl 1246.22003
  104. Maghsoudi, S und R Nasr-Isfahani, Strict topology as a mixed topology on Lebesgue spaces, Bull Aust Math Soc 84 (2011), 504-515; Zbl 1248.46010
  105. Klotz, M, An integrability criterion for Banach-Lie triple systems, J Lie Theory 22 (2012), 205–244; MR 2859032
  106. Banakh, T und N Lyaskovska, Completeness of invariant ideals in groups, Ukrainian Math J 62 (2011), 1187–1198; MR 2888669
  107. Banakh, T and N Lyaskovska, On thin-complete ideals of subsets of groups, Ukrainian Math. J. 63 (2011), no. 6, 865–879; MR 3093028
  108. Beltiţă, I and D Beltiţă, On differentiability of vectors in Lie group representations, J. Lie Theory 21 (2011), no. 4, 771-785; MR 2917691
  109. K-H Neeb, On analytic vectors for unitary representations of infinite dimensional Lie groups, Ann Inst Fourier (Grenoble) 61 (2011), 1839-1874; MR 2961842
  110. Dikranjan, D und Lukács, G, On the quasi-component of pseudocompact abelian groups, Topology Appl 159 (2012), 2152-2157; MR 2902749
  111. Banakh, T und D Repovš, Direct limit topologies in the categories of topological groups and of uniform spaces, Tohoku Math J 64 (2012), 1-24; MR 2911130
  112. Laustsen, N J, A very proper Heisenberg-Lie Banach *-algebra, Positivity 16 (2012), 67-79; Zbl pre06046109
  113. Stroppel, M, Kernels of linear representations of Lie groups, locally compact groups, and pro-Lie groups, J. Group Theory 15 (2012), 407-437; MR 2920893
  114. Walter, B, Weighted diffeomorphism groups of Banach spaces and weighted mapping groups, Dissertationes Math. (Rozprawy Mat.) 484 (2012), 128 pp; MR 2952176
  115. Masiha, HP, Extreme points in the set of topological left invariant means on locally compact semigroups, Far East J. Math. Sci. (FJMS) 70 (2012), no. 2, 375-398; MR 3051540
  116. Michor, PW and D Mumford, A zoo of diffeomorphism groups on R^n, Ann. Global Anal. Geom. 44 (2013), no. 4, 529-540; MR 3132089
  117. Protasov, IV and S Slobodyanyuk, Thin subsets of groups Ukrainian Math. J. 65 (2014), no. 9, 1384-1393; MR 3176453
  118. Pelletier, F, Integrability of weak distributions on Banach manifolds, Indag. Math. 23 (2012), 214-242; Zbl 1286.46087
  119. Bonfiglioli, A, E Lanconelli, V Magnani, and M Scienza, H-convex distributions in stratified groups, Proc. Am. Math. Soc. 141 (2013), 3633-3638; Zbl 1302.46027
  120. Dahmen, R, Regularity in Milnor's sense for ascending unions of Banach-Lie groups, J. Lie Theory 24 (2014), 545-560; Zbl pre06316094
  121. Neeb, K-H, Positive energy representations and continuity of projective representations for general topological groups, Glasg. Math. J. 56 (2014), 295-316; Zbl pre06296561
  122. Larcher, J, Multiplications and convolutions in L. Schwartz' spaces of test functions and distributions and their continuity, Analysis, München 33 (2013), 319-332; Zbl pre06256318
  123. Willis, GA, The nub of an automorphism of a totally disconnected, locally compact group, Ergodic Theory Dyn. Syst. 34 (2014), 1365-1394; Zbl pre06359416

Impressum | Webmaster | Letzte Änderungen am : 10.04.2015