The local structure theorem for real spherical varieties

Friedrich Knop, Bernhard Krötz and Henrik Schlichtkrull

doi:10.1112/S0010437X15007307
The local structure theorem for real spherical varieties

Friedrich Knop, Bernhard Krötz and Henrik Schlichtkrull

ABSTRACT

Let G be an algebraic real reductive group and Z a real spherical G-variety, that is, it admits an open orbit for a minimal parabolic subgroup P. We prove a local structure theorem for Z. In the simplest case where Z is homogeneous, the theorem provides an isomorphism of the open P-orbit with a bundle $Q \times L$. Here Q is a parabolic subgroup with Levi decomposition $L \rtimes U$, and S is a homogeneous space for a quotient $D = L/L_n$ of L, where $L_n \subseteq L$ is normal, such that D is compact modulo center.

1. Introduction

Let G_C be a complex reductive group and $B_C \triangleleft G_C$ a fixed Borel subgroup. We recall that a normal G_C-variety Z_C is called spherical provided that B_C admits an open orbit. The local nature of a spherical variety is given in terms of the local structure theorem [BLV86, Kno94]. In its simplest form, namely applied to a homogeneous space $Z_C = G_C/H_C$ for which $B_C H_C$ is open, it asserts that there is a parabolic subgroup $Q_C > B_C$ with Levi decomposition $Q_C = L_C \ltimes U_C$ such that the action of Q_C on Z_C induces an isomorphism of $(L_C/L_C \cap H_C) \times U_C$ onto $B_C H_C$.

The purpose of this paper is to continue the geometric study of real spherical varieties begun in [KS13]. We let G be an algebraic real reductive group and Z a normal real algebraic G-variety. Then Z is called real spherical provided a minimal parabolic subgroup $P \triangleleft G$ has at least one open orbit on Z. With this assumption on Z we prove a local structure theorem analogous to the one above. In particular, when applied to a homogeneous real spherical space $Z = G/H$ with $P H$ open, it yields a parabolic subgroup $Q > P$ with Levi decomposition $Q = L \rtimes U$ such that

$$L_n \lhd Q \cap H < L.$$

Here $L_n \lhd L$ denotes the product of all non-compact non-abelian normal factors of L. Furthermore, the action of Q induces a diffeomorphism of $(L/L \cap H) \times U$ onto $P H$.

Our proof of the real local structure theorem is based on the symplectic approach of [Kno94]. Our investigations also show the number of G-orbits on a real spherical variety is finite. Combined with the main result of [KS13], it implies that the number of P-orbits on a real spherical variety is finite.

Received 23 October 2013, accepted in final form 19 December 2014, published online 9 July 2015.

2010 Mathematics Subject Classification 14L30, 14M17, 14M27, 22F30 (primary).

Keywords: spherical varieties, homogeneous spaces, real reductive groups.

The second author was supported by ERC Advanced Investigators Grant HARG 268105.

This journal is © Foundation Compositio Mathematica 2015.

2. Homogeneous spherical spaces

Lie groups in this paper will be denoted by upper-case Latin letters, \(A, B \ldots \), and their associated Lie algebras with the corresponding lower-case Gothic letter \(a, b \ldots \).

For a Lie group \(G \) we denote by \(G_0 \) its connected component containing the identity, by \(Z(G) \) the center of \(G \) and by \([G,G]\) the commutator subgroup.

On a real reductive Lie algebra \(g \) we fix a non-degenerate invariant bilinear form \(\kappa(\cdot,\cdot) \), for example the Cartan–Killing form if \(g \) is semisimple.

A Lie group \(G \) will be called real reductive provided that:

\(- \) the Lie algebra \(g \) is reductive;
\(- \) there exists a maximal compact subgroup \(K < G \) such that we have a homeomorphism (polar decomposition)
\[
K \times s \to G, \quad (k,X) \mapsto k \exp(X)
\]
where \(s := \mathfrak{t}^\perp \).

Observe that for a real reductive group the bilinear form \(\kappa \) can (and will) be chosen \(K \)-invariant. A real reductive group is called algebraic if it is isomorphic to an open subgroup of the group of real points \(G_\mathbb{C}(\mathbb{R}) \) where \(G_\mathbb{C} \) is a reductive algebraic group which is defined over \(\mathbb{R} \).

Now let \(G \) be a real reductive group, and let \(P \) be a minimal parabolic subgroup. The unipotent part of \(P \) is denoted \(N \). If a maximal compact subgroup \(K \) as above has been chosen, with associated Cartan involution \(\theta \) of \(G \), a maximal abelian subspace \(a \subset s \) can also be chosen. These choices then induce an Iwasawa decomposition \(G = KAN \) of \(G \) and a Langlands decomposition \(P = MAN \) of \(P \). Here \(M = Z_K(a) \). However, at present we do not fix \(K \) and \(a \).

Let \(H \) be a closed subgroup of \(G \) such that \(H/H_0 \) is finite. Recall that \(Z = G/H \) is said to be real spherical if the minimal parabolic subgroup \(P \) admits an open orbit on \(Z \). Furthermore, in this case \(H \) is called a spherical subgroup. Note that \(H \) is not necessarily reductive.

Remark 2.1. Here a remark on terminology is in order. Historically, spherical subgroups were first introduced by M. Krämer in the context of compact Lie groups; see [Krä79]. However, as our focus is to investigate non-compact homogeneous spaces we allow a discrepancy between the original definition and the current one. In fact with our definition every closed subgroup of \(G \) is spherical if \(G \) is compact.

We denote by \(z_0 \in Z \) the origin of the homogeneous space \(Z = G/H \).

2.1 Semi-invariant functions and the local structure theorem

Let \(G \) be a real reductive Lie group.

Definition 2.2. Let \(Z = G/H \) with \(H \subseteq G \) a closed subgroup.

1. A finite-dimensional real representation \((\pi,V)\) of \(G \) is called \(H \)-semispherical provided there is a cyclic vector \(v_H \in V \) and a character \(\gamma : H \to \mathbb{R}^\times \) such that
\[
\pi(h)v_H = \gamma(h)v_H, \quad \forall h \in H.
\]
2. The homogeneous space \(Z \) is called almost algebraic if there exists an \(H \)-semispherical representation \((\pi,V)\) such that the map
\[
Z \to \mathbb{P}(V), \quad g \cdot z_0 \mapsto [\pi(g)v_H]
\]
is injective.
REAL SPHERICAL VARIETIES

According to a theorem of Chevalley (see [Bor91, Theorem 5.1]), \(Z = G/H \) is almost algebraic if \(G \) and \(H \) are algebraic. In the following we always assume that \(Z = G/H \) is almost algebraic.

For a reductive Lie algebra \(\mathfrak{g} \) we write \(\mathfrak{g}_0 \) for the direct sum of the non-compact non-abelian ideals in \([\mathfrak{g},\mathfrak{g}] \). If \(\mathfrak{g} \) is the Lie algebra of \(G \), then \(G_n \) denotes the corresponding connected normal subgroup of \([G,G] \).

Theorem 2.3 (Local structure theorem, homogeneous case). Let \(Z = G/H \) be an almost algebraic real spherical space, and let \(P \subseteq G \) be a minimal parabolic subgroup such that \(PH \) is open. Then there is a parabolic subgroup \(Q \supseteq P \) with Levi decomposition \(Q = LU \) such that:

(i) the map \(Q \times_L (L/L \cap H) \to Z, \ [q,l(L \cap H)] \mapsto ql \cdot z_0 \)

is a \(Q \)-equivariant diffeomorphism onto \(Q \cdot z_0 \subseteq Z \);

(ii) \(Q \cap H \subseteq L \);

(iii) \(L_n \subseteq H \);

(iv) \((L \cap P)(L \cap H) = L \);

(v) \(QH = PH \).

Proof. The proof consists of an iterative procedure in which we construct a strictly decreasing sequence of parabolic subgroups \(Q_0 \supseteq Q_1 \supseteq \cdots \supseteq P \)

and corresponding Levi subgroups \(L_0 \supseteq L_1 \supseteq \ldots \), all satisfying (i). Note that (ii) is an immediate consequence of (i). After a finite number of steps a parabolic subgroup is reached which also satisfies (iii)–(v).

Let \(Q_0 = G \). It clearly satisfies (i). If \(G_n \subseteq H \) then \(PH = G \) since \(P \) contains both the center of \(G \) and every compact normal subgroup of \([G,G] \). Hence in this case \(Q = Q_0 \) solves (i)–(v). Note also that since \(L \cap P \) is a minimal parabolic subgroup of \(L \), the argument just given, but applied to \(L \), shows that (iv) and (v) are consequences of (iii).

Assume now that \(G_n \not\subseteq H \). By our general assumption on \(Z \) there is a \(\pi \)-finite-dimensional representation \((\pi,V) \) of \(G \) and a vector \(v_H \in V \) satisfying all the properties of Definition 2.2. The assumption on \(G_n \) implies that \(\pi(g)v_H \notin \mathbb{R}v_H \) for some \(g \in G_n \), hence \(\pi \) does not restrict to a multiple of the trivial representation of \(G_n \).

Choose a Cartan involution for \(G \) and a maximal abelian subspace \(\mathfrak{a} \subset \mathfrak{s} \), but note that these choices may be valid only for the current step of the iteration. Let \(v^* \in V^* \setminus \{0\} \) be an extremal weight vector so that the line \(\mathbb{R}v^* \) is fixed by \(AN \), say \(\pi^*(g)v^* = \chi(g)v^* \) for \(g \in AN \) and some character \(\chi : AN \to \mathbb{R}^\times \). Now we need the following lemma.

Lemma 2.4. Let \(G \) be a connected semisimple Lie group without compact factors, and with minimal parabolic \(P = MAN \subseteq G \). Let \(V \) be a non-trivial finite-dimensional irreducible real representation of \(G \). Then \(V^{AN} = \{0\} \).

Proof. Let \(\bar{N} = \theta(N) \) be the unipotent part of the parabolic subgroup \(\theta(P) \) opposite to \(P \). It follows from the representation theory of \(\mathfrak{sl}(2,\mathbb{R}) \) that vectors in \(V^{AN} \) are also fixed by \(\bar{N} \). Since \(G \) has no compact factors it is generated by \(\bar{N} \) and \(AN \), hence \(V^{AN} = V^G = \{0\} \).

By this lemma and what we have just seen, we can choose \(v^* \) such that \(\chi \) is non-trivial on \(G_n \cap A \). The matrix coefficient

\[f(g) := v^*(\pi(g)v_H) \quad (g \in G) \]
satisfies \(f(anh) = \chi(a)^{-1} \gamma(h) f(g) \) for all \(g \in G \), \(a \in AN \) and \(h \in H \). As \(v_H \) is cyclic and \(v^* \) non-zero, and as \(PH \) is open, \(f \) is not identically zero on \(M \).

We construct a new function:

\[
F(g) := \int_M f(mg)^2 \, dm \quad (g \in G).
\]

This function is smooth, \(G \)-finite, non-negative, and satisfies

\[
F(manhh) = \chi(a)^{-1} \gamma^2(h) F(g)
\]

for all \(g \in G \), \(man \in P \) and \(h \in H \). Furthermore, \(F(e) > 0 \).

It follows from the \(G \)-finiteness, together with (2.1), that \(F \) is a matrix coefficient \(F(g) = w^*(\rho(g) w_H) \)
of a finite-dimensional representation \((\rho, W)\) of \(G \), with non-zero vectors \(w_H \in W \) and \(w^* \in W^* \) such that

\[
\rho(h) w_H = \gamma(h)^2 w_H, \quad \rho^*(man) w^* = \chi(a)^2 w^*
\]

for all \(h \in H \) and \(man \in P = MAN \). Here, \(W^* \) can be chosen to be the span of all left translates of \(F \). Since \(F \) is a highest weight vector, \(W^* \) and hence \(W \) are irreducible. Define \(\nu \in \frak{a}^* \) by

\[
e^{\nu(x)} = \chi(\exp X)^2.
\]

Then \(\nu \) is the highest \(\frak{a} \)-weight of \(\rho^* \), and it is dominant with respect to the set \(\Sigma(\frak{a}, \frak{n}) \) of \(\frak{a} \)-roots in \(\frak{n} \).

Now define a subgroup \(Q_1 = Q \subseteq G \) to be the stabilizer of \(\mathbb{R} w^* \),

\[
Q = \{ g \in G \mid \rho^*(g) w^* \in \mathbb{R} w^* \},
\]

and define a character \(\psi : Q \to \mathbb{R}^\times \) by

\[
\rho^*(g) w^* = \psi(g) w^*.
\]

In particular, we see that \(Q \) is a parabolic subgroup that contains \(P \). Moreover, \(\psi : Q \to \mathbb{R} \)
extends \(\chi^2 : AN \to \mathbb{R}^\times \). Let \(U \subseteq Q \) be the unipotent radical of \(Q \); its Lie algebra is spanned by
the root spaces of the roots \(\alpha \in \Sigma(\frak{a}, \frak{n}) \) for which \(\langle \alpha, \nu \rangle > 0 \).

Note that since \(w_H \) is cyclic, \(\rho^*(g) w^* = cw^* \) if and only if \(F(g^{-1}x) = cF(x) \) for all \(x \in G \). Hence

\[
Q = \{ g \in G \mid F(g \cdot) \text{ is a multiple of } F \}
\]

and \(F(g \cdot) = \psi(q) F \) for all \(q \in Q \). (We use the symbol \(F(g \cdot) \) for the function \(x \mapsto F(g x) \) on \(G \).)

We note that \(Q \cap G_n \) is a proper subgroup of \(G_n \), for otherwise \(\rho^* \) would be one-dimensional
spanned by \(w^* \), and this would contradict the non-triviality of its highest weight \(e^\nu = \chi^2 \) on \(G_n \cap A \).

Set \(Z_0 := QH \subseteq Z \). Then \(Z_0 \) is open since \(qPH \) is open for each \(q \in Q \). Following [Knop94, Theorem 2.3], we define a moment-type map

\[
\mu : Z_0 \to \frak{g}^*, \quad \mu(z)(X) := \frac{dF(q)(X)}{F(q)} = \left. \frac{d}{dt} \right|_{t=0} \frac{F(\exp(tX)q)}{F(q)}
\]

for \(q \in Q \) such that \(z = QH \in Z_0 \) and \(X \in \frak{g} \). Note that this map is well defined: \(F(q) \neq 0 \) for \(q \in Q \), and if \(q \cdot z_0 = q' \cdot z_0 \) then \(q = q'h \) for some \(h \in H \).

We let \(G \) act on \(\frak{g}^* \) via the co-adjoint action and record the following result.
Let $z \in Z_0$, $q \in Q$ and $Y \in g$. Then
\[
\mu(qz)(Y) = \frac{d}{dt}|_{t=0} F(\exp(tY)qz) = \frac{d}{dt}|_{t=0} F(qq^{-1}\exp(tY)qz) = \frac{d}{dt}|_{t=0} F(q\exp(tq^{-1}Y)z) = (Ad^*(q)\mu(z))(Y).
\]

Note that
\[
\mu(z)(X) = d\psi(X), \quad (X \in q)
\]
for all $z \in Z_0$. In particular, $\mu(z_1) - \mu(z_2) \in q^\perp \subseteq g^*$ for $z_1, z_2 \in Z_0$. Moreover, $\mu(z)(X + Y) = -\nu(X)$ for $X \in a$ and $Y \in m + n$.

We now identify g^* with g via the invariant non-degenerate form $\kappa(\cdot, \cdot)$. Then q^\perp is identified with u, and $(m + n)^\perp$ with $a + n$. Let
\[
X_0 = \mu(z_0) \in a + n.
\]
Then $X_0 \notin n$ since $\nu \neq 0$ and hence X_0 is a semisimple element. Write X_0 for the a-part of X_0. Then the eigenvalues of $ad(X_0)$ on n are the $\alpha(X)$ where $\alpha \in \Sigma(a, n)$. By the identification of g^* with g, these are the inner products $\langle -\nu, \alpha \rangle$; in particular, they are all non-positive and on u they are negative.

We conclude from the above that $im\mu \subseteq X_0 + u$. We claim equality:
\[
im\mu = X_0 + u. \tag{2.3}
\]
As μ is Q-equivariant, we have $im\mu = Ad(Q)X_0$. The lemma below (with $X = -ad(X_0)$) implies $Ad(U)X_0 = X_0 + u$, and then (2.3) follows.

Lemma 2.6. Let u be a nilpotent Lie algebra and $X : u \rightarrow u$ a derivation which is diagonalizable with non-negative eigenvalues. Then in the solvable Lie algebra $g := RX \ltimes u$ the following identity holds:
\[
e^{ad}uX = X + [X, u]. \tag{2.4}
\]

Proof. Note that $[X, u] = u$ if all eigenvalues are positive. The inclusion \subseteq in (2.4) is easy. The proof of the opposite inclusion is by induction on $dim u$, and the case $dim u = 0$ is trivial. Assume $dim u > 0$ and let $u = \sum_{\lambda > 0} u(X, \lambda)$ be the eigenspace decomposition of the operator $X : u \rightarrow u$. Let $\lambda_1 \geq 0$ be the smallest eigenvalue and set $u_1 := u(X, \lambda_1)$ and $u_2 := \sum_{\lambda > \lambda_1} u(X, \lambda)$. Note that u_2 is an ideal in u, and $u = u_1 + u_2$ as vector spaces.

By induction we have $e^{ad}u_2X = X + u_2$. If $\lambda_1 = 0$ then $[X, u] = u_2$, and we are done. Otherwise $[u_1, u_1] \subseteq u_2$ and hence
\[
e^{ad}u_1X \in X + \lambda_1U + u_2
\]
for $U \in u_1$. Note that $e^{ad}u_1$ is a group as u_1 is nilpotent. It follows that
\[
e^{ad}uX \supseteq e^{ad}u_1e^{ad}u_2X = e^{ad}u_1(X + u_2)
\leq \bigcup_{U \in u_1} e^{ad}U(X + u_2) = \bigcup_{U \in u_1} (e^{ad}U X + u_2) = \bigcup_{U \in u_1} (X + \lambda_1 U + u_2) = X + u.
\]

2149
Continuing with the proof of Theorem 2.3, we conclude that the stabilizer \(L \subseteq Q \) of \(X_0 \in q \) is a reductive Levi subgroup. Let

\[S := \mu^{-1}(X_0) = \{ z \in Z_0 \mid \mu(z) = X_0 \}. \]

Then for \(q \in Q \) we have

\[qz_0 \in S \Leftrightarrow \mu(qz_0) = X_0 \Leftrightarrow qX_0 = X_0 \Leftrightarrow q \in L. \] (2.5)

Hence \(L \) acts transitively on \(S \). As \(\mu \) is submersive, \(S \) is a submanifold of \(Z_0 \) and we obtain with

\[Q \times_L S \to Z_0 \] (2.6)

a \(Q \)-equivariant diffeomorphism. As an \(L \)-homogeneous space, \(S \) is isomorphic to \(L/L \cap H \). Hence (i) is valid.

Note that (2.5) implies that \((L \cap P)H = S \cap (PH)\), which is open in \(S \). Thus \(L/L \cap H \) is a real spherical space.

If (iii) is valid, we are done. Otherwise we let \(Q_1 = Q \) and consider the real spherical space \(Z_1 = L_1/L_1 \cap H \) for \(L_1 = L \). Iterating the procedure of before yields a proper parabolic subgroup \(R \) of \(L_1 \) containing \(L_1 \cap N \) and with a Levi subgroup \(L_2 \subseteq L_1 \) such that

\[(R \cap N) \times L_2/(L_2 \cap H) \to R \cdot z_0 \] (2.7)

is a diffeomorphism. We let \(Q_2 = RP = RU_1 \), which is a subgroup since \(R \) normalizes \(U_1 \). Note that (2.7), together with the property (i) for \(Q_1 \), implies that this property is valid also for \(Q_2 \). We continue iterations until \(H \) contains the non-compact semisimple part of some \(L_i \). This will happen eventually since the non-compact semisimple part of a Levi subgroup of \(P \) is trivial. \(\square \)

2.2 Z-adapted parabolics

Definition 2.7. Let \(Z = G/H \) be a real spherical space. A parabolic subgroup \(Q < G \) will be called \(Z \)-adapted provided that:

- (i) there is a minimal parabolic subgroup \(P \subseteq Q \) with \(PH \) open;
- (ii) there is a Levi decomposition \(Q = LU \) such that \(Q \cap H \subseteq L \);
- (iii) \(l_u \subseteq h \).

A parabolic subalgebra \(q \) of \(g \) is called \(Z \)-adapted if it is the Lie algebra of a \(Z \)-adapted parabolic subgroup \(Q \).

Theorem 2.8. Let \(Z = G/H \) be an almost algebraic real spherical space and \(P \) a minimal parabolic subgroup such that \(PH \) is open. Then there exists a unique parabolic subgroup \(Q \supseteq P \) with unipotent radical \(U \) such that \(u \) is complementary to \(n \cap h \) in \(n \). Moreover, this parabolic subgroup \(Q \) is \(Z \)-adapted, and it is the unique parabolic subgroup above \(P \) with that property.

Proof. Note first that if \(Q \supseteq P \) and \(Q = LU \) is a Levi decomposition then \(n = (n \cap l) \oplus u \). Assuming in addition (ii) and (iii) above, then \(n \cap h = n \cap l \), and hence \(n \cap h \) is complementary to \(u \). Hence every \(Z \)-adapted parabolic subgroup \(Q \supseteq P \) has this property of complementarity. In particular, this holds then for the parabolic subgroup \(Q \) constructed with Theorem 2.3.

It remains to prove that if \(Q' \supseteq P \) is another parabolic for which the unipotent radical \(u' \) is complementary to \(n \cap h \), then \(Q' = Q \). Since \(l_u \subseteq h \) we find

\[u' \cap l \subseteq u' \cap h = \{0\}. \]

The lemma below now implies \(u \supseteq u' \). But then \(u = u' \) since both spaces are complementary to \(n \cap h \), and hence \(Q = Q' \). \(\square \)
Lemma 2.9. Let \(\mathfrak{p} \) be a minimal parabolic subalgebra, and let \(\mathfrak{q}, \mathfrak{q}' \supseteq \mathfrak{p} \) be parabolic subalgebras with unipotent radicals \(\mathfrak{u}, \mathfrak{u}' \). If there exists a Levi decomposition \(\mathfrak{q} = \mathfrak{l} + \mathfrak{u} \) such that \(\mathfrak{l} \cap \mathfrak{u}' = \{0\} \), then \(\mathfrak{q} \subseteq \mathfrak{q}' \).

Proof. This follows easily from the standard description of the parabolic subalgebras containing \(\mathfrak{p} \) by sets of simple roots. \(\square \)

2.3 The real rank of \(\mathcal{Z} \)

Let \(\mathcal{Q} \) be \(\mathcal{Z} \)-adapted, with Levi decomposition \(\mathcal{Q} = \mathcal{L} \mathcal{U} \) as in Definition 2.7. From the local structure theorem we obtain an isomorphism

\[
\mathcal{Q} \times \mathcal{L} \mathcal{L}/\mathcal{L} \cap \mathcal{H} \to \mathcal{Q} \cdot z_0 = \mathcal{P} \cdot z_0.
\]

Recall that \(\mathcal{L}_n \subseteq \mathfrak{h} \). We decompose

\[
\mathfrak{l} = \mathfrak{z}(\mathfrak{l}) \oplus [\mathfrak{l}, \mathfrak{l}] = \mathfrak{z}(\mathfrak{l}) \oplus \mathfrak{l}_c \oplus \mathfrak{l}_n,
\]

where \(\mathfrak{l}_c \) denotes the sum of all compact simple ideals in \(\mathfrak{l} \). Note that \(\mathfrak{D} = \mathcal{L}/\mathcal{L}_n \) is a Lie group with the Lie algebra \(\mathfrak{d} = \mathfrak{z}(\mathfrak{l}) + \mathfrak{l}_c \), which is compact, and that

\[
\mathfrak{l} \cap \mathfrak{h} = \mathfrak{c} \oplus \mathfrak{l}_n
\]

with \(\mathfrak{c} = \mathfrak{d} \cap \mathfrak{h} \). Let \(\mathcal{C} = (\mathcal{L} \cap \mathcal{H})/\mathcal{L}_n \subseteq \mathcal{D} \); then \(\mathcal{L}/\mathcal{L} \cap \mathcal{H} = \mathcal{D}/\mathcal{C} \), and

\[
\mathcal{U} \times \mathcal{D}/\mathcal{C} \to \mathcal{P} \cdot z_0 \quad (2.9)
\]

is an isomorphism.

Consider the refined version of (2.8),

\[
\mathfrak{l} = \mathfrak{z}(\mathfrak{l})_{np} \oplus \mathfrak{z}(\mathfrak{l})_{cp} \oplus \mathfrak{l}_c \oplus \mathfrak{l}_n,
\]

in which \(\mathfrak{z}(\mathfrak{l})_{np} \) and \(\mathfrak{z}(\mathfrak{l})_{cp} \) denote the non-compact and compact parts of \(\mathfrak{z}(\mathfrak{l}) \). Let \(\mathcal{L} = \mathcal{K}_L \mathcal{A}_L \) \((\mathcal{L} \cap \mathcal{N}) \) be an Iwasawa decomposition of \(\mathcal{L} \), and let \(\mathcal{G} = \mathcal{K} \mathcal{A} \mathcal{N} \) be an Iwasawa decomposition of \(\mathcal{G} \) which is compatible, that is, \(\mathcal{K} \supseteq \mathcal{K}_L \) and \(\mathcal{A} = \mathcal{A}_L \). Then \(\mathfrak{a} = \mathfrak{z}(\mathfrak{l})_{np} \oplus (\mathfrak{a} \cap \mathfrak{l}_n) \).

Let \(\mathfrak{a}_h \subseteq \mathfrak{z}(\mathfrak{l})_{np} \) be the image of \(\mathfrak{c} \) under the projection \(\mathfrak{l} \to \mathfrak{z}(\mathfrak{l})_{np} \) along (2.10), and let \(\mathfrak{a}_Z \) be a subspace of \(\mathfrak{z}(\mathfrak{l})_{np} \), complementary to \(\mathfrak{a}_h \). Then

\[
\mathfrak{a} = \mathfrak{a}_Z \oplus \mathfrak{a}_h \oplus (\mathfrak{a} \cap \mathfrak{l}_n). \quad (2.11)
\]

The number \(\dim \mathfrak{a}_Z \) will be called the real rank of \(\mathcal{Z} \) in §3, where we show (under an additional hypothesis) that it is an invariant of \(\mathcal{Z} \) (it is independent of the choices of \(\mathcal{P} \) and \(\mathcal{L} \)). See Remark 3.5.

2.4 \(\mathcal{H}\mathcal{P} \)-factorizations of a semisimple group

Let \(\mathcal{Z} = \mathcal{G}/\mathcal{H} \) be real spherical. In general \(\mathcal{G}/\mathcal{P} \) admits several \(\mathcal{H} \)-orbits. Here we investigate the simplest case where there is just one orbit.

Proposition 2.10. Let \(\mathcal{G} \) be semisimple. Assume that \(\mathcal{Z} = \mathcal{G}/\mathcal{H} \) is real spherical and that \(\mathfrak{h} \) contains no non-zero ideal of \(\mathfrak{g} \). Then \(\mathcal{H}\mathcal{P} = \mathcal{G} \) if and only if \(\mathcal{H} \) is compact.
3. Real spherical varieties

All complex varieties Z_C in this section will be defined over \mathbb{R}. Typically we denote by Z the set of real points of Z_C. If Z is Zariski dense in Z_C, then we call Z a real (algebraic) variety.

We say that a subset $U \subset Z$ is (quasi-)affine if there exists a (quasi-)affine subset $U_C \subset Z_C$ such that $U = U_C \cap Z$.

Remark 3.1. Even if Z_C is irreducible it might happen that Z has several connected components with respect to the Euclidean topology. However, by Whitney’s theorem, the number of connected components is always finite. Take, for example, $Z = \text{GL}(n, \mathbb{R})$ and $Z_C = \text{GL}(n, \mathbb{C})$. Here Z breaks into two connected components $\text{GL}(n, \mathbb{R})_+$ and $\text{GL}(n, \mathbb{R})_-$ characterized by the sign of the determinant; certainly it would be meaningful to call $\text{GL}(n, \mathbb{R})_+$ a real algebraic variety as well.

Let $Z_1 \cup \ldots \cup Z_n$ be the decomposition of Z into connected components (with respect to the Euclidean topology). A more general notion of real variety would be to allow arbitrary unions of those Z_j which are Zariski dense in Z_C. In fact, all the statements derived in this section for real varieties are valid in this more general setup.

In this section we let G be a real algebraic reductive group and $G_C \supseteq G$ its complexification. Furthermore, P is a minimal parabolic subgroup of G and $P = MAN$ a Langlands decomposition of it.

By a real G-variety Z we understand a real variety Z endowed with a real algebraic G-action. A real G-variety will be called linearizable provided there is a finite-dimensional real G-module V such that Z is realized as real subvariety of $P(V)$.

An algebraic real reductive group G is called elementary if $G \cong M \times A$ with M compact and $A = (\mathbb{R}^+)^l$. This is equivalent to $G = P$. A real G-variety Z will then be called elementary if G/J is elementary where J is the kernel of the action on Z.

Proof. Assume that $HP = G$. Note that then $HgP = G$ for every $g \in G$ and hence

$$\mathfrak{h} + \text{Ad}(g)(\mathfrak{p}) =\mathfrak{g}$$

for every $g \in G$.

We first reduce to the case where H is reductive in G. Otherwise there exists a non-zero ideal \mathfrak{h}_u in \mathfrak{h} which acts unipotently on \mathfrak{g}. By conjugating P if necessary, we may assume that $\mathfrak{h}_u \subseteq \mathfrak{n}$. It then follows from $G = PH$ that $\text{Ad}(g)(\mathfrak{h}_u) \subseteq \mathfrak{n}$ for all $g \in G$, which is absurd.

Assume now that H is reductive and let $H = K_H A_H N_H$ be an Iwasawa decomposition. Let $X \in \mathfrak{a}_H$ be regular dominant with respect to \mathfrak{n}_H, and let \mathfrak{q} be the parabolic subalgebra of \mathfrak{g} which is spanned by the non-negative eigenspaces of $\text{ad}X$. It follows that $\mathfrak{q} \cap \mathfrak{h}$ is a minimal parabolic subalgebra of \mathfrak{h}, and that \mathfrak{n}_H is contained in the unipotent part \mathfrak{u} of \mathfrak{q}. As \mathfrak{q} contains a conjugate of \mathfrak{p} we have $\mathfrak{q} = \mathfrak{h} + \mathfrak{q}$ and hence $\dim(\mathfrak{h}/(\mathfrak{q} \cap \mathfrak{h})) = \dim(\mathfrak{q}/\mathfrak{q})$, from which we deduce that $\mathfrak{n}_H = \mathfrak{u}$. From $\mathfrak{n}_H = \mathfrak{u}$ and $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}$ we deduce that $\mathfrak{g} = \mathfrak{h} + \mathfrak{l}$. Let \mathfrak{n}_n be the subalgebra of \mathfrak{h} generated by \mathfrak{n}_H and its opposite \mathfrak{n}_H with respect to the Cartan involution of H associated with $H = K_H A_H N_H$. Then \mathfrak{n}_n is \mathfrak{l}-invariant and an ideal in \mathfrak{h}. With $\mathfrak{g} = \mathfrak{h} + \mathfrak{l}$ we now infer that \mathfrak{n}_n is an ideal in \mathfrak{g}, and hence it is zero. It follows that $H = K_H A_H$, where A_H is central in H. We may assume $K_H \subseteq K$ and $A_H \subseteq A$. Then $G = HP$ implies $K = K_H M$, and hence K centralizes A_H. This is impossible unless $A_H = \{1\}$ and then H is compact.

Conversely, if H is compact then the open H-orbit on G/P is closed, and since G/P is connected it follows that $HP = G$.

2152
DEFINITION 3.2. A linearizable real G-variety Z will be called real spherical provided that:

- Z_C is irreducible,
- Z admits an open P-orbit.

Remark 3.3. (a) In the definition of a (complex) spherical variety one requires in particular that the variety is normal. We now explain how this is related to our notion of real spherical.

Assume that Z_C is normal. Then it follows from a theorem of Sumihiro [KKLV89, p. 64] that every point $z \in Z_C$ has a G_C-invariant open neighborhood U which can be equivariantly embedded into $\mathbb{P}(V_C)$ where V_C is a finite-dimensional representation of G_C. It follows that if $z \in Z$ then $U_0 := (U \cap \overline{U}) \cap Z$ is a linearizable open neighborhood of z. Observe that there is always a normalization map $\nu : \hat{Z} \rightarrow Z$ where \hat{Z} is a normal G-variety and ν is proper, finite to one, and invertible over an open dense subset of Z.

(b) If Z is a real spherical variety, then the number of open P-orbits is finite: As Z_C is irreducible, there is exactly one open P_C-orbit on Z_C and the real points of this open P_C-orbit decompose into finitely many P-orbits. We conclude in particular that there are only finitely many open G-orbits in Z. Let $\mathcal{O} \simeq G/H$ be one of them. Then G/H is a real spherical algebraic homogeneous space which we considered before.

(c) Let Z be an elementary real spherical variety. If $G = A$, then Z consists of the real points of a toric variety defined over \mathbb{R}.

(d) Let $G = M \times A$ be an elementary algebraic real reductive group and $Z = G/H$ a homogeneous real spherical G-variety. Since there are no algebraic homomorphisms between a split torus and a compact group, the group H splits as $H = M_0 \times A_0$ with $M_0 \subseteq M$ and $A_0 \subseteq A$. Thus $Z = M/M_0 \times A/A_0$.

3.1 Some general facts about real G-varieties

Let Z be an irreducible real variety. We denote by $\mathbb{C}[Z]$ (respectively, $\mathbb{C}(Z)$) the ring of regular (respectively, rational) functions on Z, that is, $\mathbb{C}[Z]$ consists of the restrictions of the regular functions on Z_C to Z, and likewise for $\mathbb{C}(Z)$.

As Z is Zariski dense we observe that the restriction mapping $\text{Res} : \mathbb{C}(Z_C) \rightarrow \mathbb{C}(Z)$ is bijective. Next we note that both $\mathbb{C}(Z)$ and $\mathbb{C}[Z]$ are invariant under complex conjugation $f \mapsto \overline{f}$. In particular with $f \in \mathbb{C}[Z]$ (respectively, $\mathbb{C}(Z)$), we also have that $\text{Re} f$ and $\text{Im} f$ belong to $\mathbb{C}[Z]$ (respectively, $\mathbb{C}(Z)$).

If a compact real algebraic group M acts on Z, then the M-average

$$f \mapsto f^M; \quad f^M(z) := \int_M f(m \cdot z) \, dm \quad (z \in Z)$$

preserves $\mathbb{C}[Z]$. This follows from the fact that the G-action on $\mathbb{C}[Z]$ is locally finite. Put together, we conclude

$$f \in \mathbb{C}[Z] \Rightarrow (|f|^2)^M \in \mathbb{C}[Z]^M \quad \text{with } f \neq 0 \Rightarrow (|f|^2)^M \neq 0. \quad (3.1)$$

Let us denote by \hat{P} the set of real algebraic characters $\chi : P \rightarrow \mathbb{R}^\times$ such that $MN \subseteq \ker \chi$. Note that the subgroup MN of P, and hence \hat{P}, is independent of the choice of a Langlands decomposition of P. However, when that has been chosen, there is a natural identification of \hat{P} with a lattice $\Lambda \subseteq \mathfrak{a}^\times$.

For the rest of this subsection we let Z be a real G-variety. We denote by $\mathbb{C}(Z)^{(P)}$ the set of P-semi-invariant functions, i.e., the rational functions $f \in \mathbb{C}(Z) \setminus \{0\}$ for which there is a $\chi \in \hat{P}$ such that $f(p^{-1} z) = \chi(p) f(z)$ for all $p \in P$, $z \in Z$ for which both sides are defined. We denote
If \(\text{rk}_R (Z) = 0 \) the set of \(P \)-invariants in \(C(Z) \). Likewise we define \(C[Z]^{(P)} \) and \(C[Z]^P \). Further, we denote by \(\mathbb{R}(Z) \) and \(\mathbb{R}[Z] \) the real-valued functions in \(C(Z) \) and \(C[Z] \).

Lemma 3.4. Let \(Z \) be a quasi-affine real \(G \)-variety. Then for all non-zero \(f \in \mathbb{R}(Z)^P \) there exist \(f_1, f_2 \in \mathbb{R}[Z]^{(P)} \) such that \(f = f_1/f_2 \).

Proof. Let \(f \in \mathbb{R}(Z)^P \). As \(Z \) is quasi-affine, we find regular functions \(h_1, h_2 \in C[Z], h_2 \neq 0 \) such that \(f = h_1/h_2 \). Consider the ideal

\[
I := \{ h \in C[Z] \mid hf \in C[Z] \}.
\]

Note that:

- \(I \neq \{0\} \) as \(h_2 \in I \);
- \(I = \mathcal{I} \) as \(f \) is real;
- \(I \) is \(P \)-invariant as \(f \) is \(P \)-fixed.

The action of \(P \) on \(C[Z] \) is algebraic, hence locally finite, and thus we find an element \(0 \neq h \in I \) which is an eigenvector for the solvable group \(AN \). We use (3.1) to obtain with \(f_2 = (|h|^2)^M \) a non-zero element of \(I \cap \mathbb{R}[Z]^{(P)} \). Now we put \(f_1 = f_2 f \in \mathbb{R}[Z]^{(P)} \).

For \(\chi \in \hat{P} = \Lambda \) we let

\[
C[Z]_\chi := \{ f \in C[Z] \mid (\forall p \in P, z \in Z) f(p^{-1}z) = \chi(p)f(z) \},
\]

and define \(C(Z)_\chi \) likewise. We define a sub-lattice of \(\Lambda \) by

\[
\Lambda_Z := \{ \chi \in \hat{P} \mid C(Z)_{\chi} \neq \{0\} \}.
\]

With that we declare the **real rank** of \(Z \) by

\[
\text{rk}_R (Z) := \dim_Q (\Lambda_Z \otimes_Z \mathbb{Q}). \tag{3.2}
\]

It is easily seen that \(\text{rk}_R (Z) \) is independent of the choice of minimal parabolic subgroup \(P \).

Remark 3.5. Let \(Z = G/H \) be homogeneous. Then \(\text{rk}_R (Z) = \dim A_Z \) where \(A_Z \) is defined by (2.11). In fact, as a \(Q \)-variety, an open subset of \(Z \) is isomorphic to \(U \times L/L \cap H \). Thus \(\mathbb{R}(Z)^P = \mathbb{R}(L/L \cap H)^{(L \cap P)} \). Since \(H \) contains \(L \), the variety \(L/L \cap H \) is elementary. By Remark 3.3(d), we have \(\mathbb{R}(L/L \cap H)^{(L \cap P)} = \mathbb{R}(A/A_0)^{(A)} \) which implies the claim, as \(A/A_0 \cong A_Z \).

Lemma 3.6. Let \(Z \) be a linearizable irreducible real \(G \)-variety and \(Y \subseteq X \) a Zariski closed \(G \)-invariant subvariety. Then there exists a \(P \)-stable affine open subset \(Z_0 \subseteq Z \) which meets \(Y \) and such that the restriction mapping

\[
\mathbb{R}[Z_0]^{(P)} \rightarrow \mathbb{R}[Z_0 \cap Y]^{(P)}
\]

is onto.

Proof. If \(G \) is complex, then this is the real-points version of [Bri97, Proposition 1.1]. Further, with \(P \) replaced by \(AN \), one can literally copy the proof of [Bri97]. Finally, the additional \(M \)-invariance when moving from \(AN \) to \(P \) is obtained from (3.1).
Real spherical varieties

Denote by $\Lambda^+ \subseteq \Lambda$ the semigroup of elements dominant with respect to P. For all $\lambda \in \Lambda^+$ we set

$$m(\lambda) := \dim_\mathbb{C} \mathbb{C}[Z]_\lambda.$$

If we identify Λ^+ with a subset of the irreducible finite-dimensional representations of G, then $m(\lambda)$ is the multiplicity of the irreducible representation λ occurring in the locally finite G-module $\mathbb{C}[Z]$. The following proposition is a real analogue of the Vinberg–Kimel’feld theorem [VK78].

Proposition 3.7. Let Z be a quasi-affine irreducible G-variety. Then the following assertions are equivalent:

(i) Z is real spherical;
(ii) $m(\lambda) \leq 1$ for all $\lambda \in \Lambda^+$.

Proof. (i) \Rightarrow (ii) Let $z \in Z$ such that $P \cdot z$ is open in Z. Then two P-semi-invariant functions f_1 and f_2 with respect to the same character $\lambda \in \hat{P}$ satisfy $f_1|_{P \cdot z} = cf_2|_{P \cdot z}$ for some constant $c \in \mathbb{C}$. As Z_G is irreducible we conclude that $f_1 = cf_2$.

(ii) \Rightarrow (i) We recall that there is an open P-orbit on Z if and only if $\mathbb{C}(Z)^P = \mathbb{C}1$. This follows from Rosenlicht’s theorem [Spr89, p. 23], applied to Z_G. Now let $f \in \mathbb{C}(Z)^P$. According to Lemma 3.4, there exist $f_1, f_2 \in \mathbb{C}[Z]^{\{P\}}$ such that $f = f_1/f_2$. Clearly f_1 and f_2 correspond to the same character $\lambda \in \hat{P}$. As $m(\lambda) \leq 1$, we conclude that f_1 is a multiple of f_2.

Corollary 3.8. Let Z be a real spherical variety and $Y \subseteq Z$ a closed G-invariant irreducible subvariety. Then Y is real spherical.

Proof. If Z is quasi-affine, then this is immediate from the previous proposition as the restriction mapping $\mathbb{C}[Z] \rightarrow \mathbb{C}[Y]$ is onto. The more general case is reduced to that by considering the affine cone over Z. Recall that $Z \subseteq \mathbb{P}(V)$. The preimage of Z in $V \setminus \{0\}$ will be denoted by \tilde{Z}. Note that \tilde{Z} is quasi-affine. Moreover, Z is real spherical if and only if \tilde{Z} is real spherical for the enlarged reductive group $G_1 = G \times \mathbb{R}^\times$.

Corollary 3.9. Let Z be a real spherical variety. Then the number of G-orbits on Z is finite and each G-orbit is spherical.

Proof. In view of the preceding corollary we only need to show that there are finitely many G-orbits. Suppose that there are infinitely many G-orbits. We let $Y \subseteq Z$ be a closed irreducible G-subvariety of minimal dimension which admits infinitely many G-orbits. By Corollary 3.8, Y is spherical. In particular, Y admits open G-orbits. After deleting the finitely many open G-orbits from Y, we obtain a G-invariant subvariety $Y_1 \subseteq Y$ with infinitely many G-orbits. As $\dim Y_1 < \dim Y$ we reach a contradiction.

The main result of [KS13] was that every homogeneous real spherical space admits only finitely many P-orbits. With Corollary 3.9 we then deduce the following result.

Theorem 3.10. Let Z be a real spherical variety. Then the number of P-orbits on Z is finite.

3.2 The local structure theorem

Let Z be a real spherical variety and $Y \subseteq Z$ a G-invariant closed subvariety. Our goal is to find a P-invariant coordinate chart Z_0 for Z which meets Y. For that we may assume that Z is Zariski closed in $\mathbb{P}(V)$, where V is a finite-dimensional G-module. Moreover, we may assume that $Y \subseteq Z$
is a closed G-orbit. In particular, Y is real spherical by Corollary 3.9, and we let $Q_Y < G$ be a Y-adapted parabolic.

Under these assumption on Y and Z there is the following immediate generalization of Lemma 3.6.

Lemma 3.11. Let Z be real spherical variety, closed in $\mathbb{P}(V)$, and $Y \subseteq Z$ a closed G-orbit. Then there exists a Q_Y-stable affine open subset $Z_0 \subseteq Z$ which meets Y and such that the restriction mapping

$$\mathbb{R}[Z_0](Q_Y) \to \mathbb{R}[Z_0 \cap Y](Q_Y)$$

is onto.

Proof. The proof is analogous to that of Lemma 3.6. We obtain that Z_0 is the non-vanishing locus of a Q_Y-semi-invariant homogeneous polynomial function on V. \hfill \Box

Corollary 3.12. Let $Z \subseteq \mathbb{P}(V)$ be a closed real spherical variety and Y an elementary closed subvariety. Then there exists a G-stable affine open subset $Z_0 \subset Z$ such that $Z_0 \cap Y \neq \emptyset$.

Proof. One has $Q_Y = G$. \hfill \Box

We now start with the construction of Z_0. If Y is elementary, Z_0 is given by Corollary 3.12. So let us assume that Y is not elementary, i.e. G_n does not act trivially on Y. Let $P = MAN$ be opposite to P. As $Y \subseteq \mathbb{P}(V)$ is closed, we can find a vector $y_0 \in V$ such that $[y_0] \in Y$ is AN-fixed, and such that A acts by a non-trivial character on y_0. This can be seen as follows. Assume for simplicity that V is irreducible. Then Y contains a vector y of which the A-weight decomposition has a non-trivial component y_0 in the lowest weight space of V. Compression of y by A^+ then exhibits a non-zero multiple of y_0 as a limit of elements from Y.

Next we choose $v_0^* \in V^*$ such that $[v_0^*] = AN$-fixed and $v_0^*(y_0) = 1$. Let $\chi : A \to \mathbb{R}^+$ be the character defined by $a \cdot v_0^* = \chi(a)v_0^*$.

Consider the function

$$F : V \to \mathbb{R}, \quad v \mapsto \int_M v_0^*(m \cdot v)^2 \, dm$$

and note that

$$F(man \cdot v) = \psi(a)F(v)$$

for all $man \in MAN$ and $v \in V$, where $\psi = \chi^{-2}$. Further, F is real algebraic and homogeneous of degree 2. Thus $\{[v] \in \mathbb{P}(V) \mid F(v) \neq 0\}$ defines an affine open set in $\mathbb{P}(V)$ and the intersection with Z yields an affine open set Z_0. Note that F is not constant and hence Z_0 is a proper subvariety. We define $Q \supseteq P$ to be the parabolic subgroup which fixes the line $\mathbb{R}F|_{Z_0}$, that is, $Q = \{g \in G \mid gZ_0 = Z_0\}$.

As before, we define on Z_0 a moment-type map

$$\mu : Z_0 \to g^*, \quad \mu(z)(X) := \frac{dF(v)(X)}{F(v)}$$

for $z = [v] \in Z \subseteq \mathbb{P}(V)$. This map is algebraic and Q-equivariant. Let $U < Q$ be the unipotent radical.

We claim that $\text{im } \mu$ is a Q-orbit. In fact for $X \in q$ we have $\mu(z)(X) = d\psi(X)$ for all $z \in Z$, and after identifying g with g^* we obtain, as in the previous section, that

$$\text{im } \mu = \text{Ad}(Q)X_0 = X_0 + u$$
with $X_0 = \mu([y_0])$. The stabilizer of X_0 determines a Levi subgroup $L < Q$. Then $S := \mu^{-1}(X_0)$ is an L-stable affine subvariety of Z_0 and we obtain an algebraic isomorphism

$$Q \times_L S \to Z_0.$$

The affine L-variety S is real spherical and meets Y. We continue the procedure with $(L, S, S \cap Y)$ instead of (G, Z, Y). The procedure will stop at the moment when $S \cap Y$ is fixed under L_n. We have thus shown the following result.

Theorem 3.13 (Local structure theorem, general case). Let Z be a real spherical variety and $Y \subseteq Z$ a closed G-invariant subvariety. Then there is parabolic subgroup $Q \supseteq P$ with Levi decomposition $Q = LU$ with the properties that there is a Q-invariant affine open piece $Z_0 \subseteq Z$ meeting Y and an L-invariant closed spherical subvariety $S \subseteq Z_0$ such that:

(i) there is a Q-equivariant isomorphism

$$Q \times_L S \to Z_0;$$

(ii) $S \cap Y$ is an elementary spherical L-variety.

4. The normalizer of a spherical subalgebra

As in the preceding section, we assume that G is algebraic and let \mathfrak{h} be the Lie algebra of a spherical subgroup $H < G$. We denote by $\mathfrak{h} := \mathfrak{n}_0(\mathfrak{h})$ the normalizer of \mathfrak{h} in \mathfrak{g} and by \mathfrak{H} the normalizer in G. Note that $\mathfrak{h} \triangleleft \mathfrak{h}$ is an ideal. Let \mathfrak{p} be a minimal parabolic subalgebra such that $\mathfrak{p} + \mathfrak{h} = \mathfrak{g}$ and let \mathfrak{q} denote the unique parabolic subalgebra above \mathfrak{p}, which is \mathfrak{Z}-adapted. Let $\mathfrak{Z} = G/\mathfrak{H}$.

Lemma 4.1. The parabolic subalgebra \mathfrak{q} is also \mathfrak{Z}-adapted.

Proof. We write \mathfrak{q} for the unique \mathfrak{Z}-adapted parabolic above \mathfrak{p} and \mathfrak{u} for its unipotent radical. Then

$$\mathfrak{n} = (\mathfrak{n} \cap \mathfrak{h}) \oplus \mathfrak{u} = (\mathfrak{n} \cap \mathfrak{h}) \oplus \tilde{\mathfrak{u}}.$$

It follows that $\tilde{\mathfrak{u}} \subseteq \mathfrak{u}$ and $\mathfrak{q} \subseteq \mathfrak{q}$. To obtain a contradiction we assume that $\mathfrak{q} \subsetneq \mathfrak{q}$. Then $\tilde{\mathfrak{u}} \subsetneq \mathfrak{u}$ and $\mathfrak{n} \cap \mathfrak{h} \subsetneq \mathfrak{n} \cap \mathfrak{h}$. In particular, the Lie algebra $\mathfrak{h}/\mathfrak{h}$ cannot be compact.

To conclude the proof we now show that $\mathfrak{h}/\mathfrak{h}$ is compact. Suppose first that Z is quasi-affine and let $\mathbb{C}[Z] = \bigoplus_{\pi \in \hat{G}} \mathbb{C}[Z]_\pi$ be the decomposition of the G-module $\mathbb{C}[Z]$ into G-isotypical components. For each π we choose a model space V_π and let $\mathcal{M}_\pi := \text{Hom}_G(V_\pi, \mathbb{C}[Z])$ be the corresponding multiplicity space. Note that \mathcal{M}_π is finite dimensional as there is a natural identification of \mathcal{M}_π with the space of H-fixed elements in V^*_π.

Let $C := \mathfrak{h}/\mathfrak{h}$. Note that C acts from the right on $\mathbb{C}[Z]$ and preserves each $\mathbb{C}[Z]_\pi$, thus inducing an action on \mathcal{M}_π. Since Z is quasi-affine we can choose finitely many π_1, \ldots, π_k so that we obtain a faithful representation of C on the sum $\mathcal{M} := \bigoplus_{j=1}^k \mathcal{M}_{\pi_j}$.

Let $B < G_C$ be a Borel subgroup contained in P_C. For every π we let v_π be a B-highest weight vector in V_π. To every $\eta \in \mathcal{M}_\pi$ we associate the function $f_\eta(g) := \eta(\pi(g^{-1})v_\pi)$ and define an inner product on \mathcal{M}_π by

$$\langle \eta, \eta \rangle := (|f_\eta|^2)_{M}(z_0)$$

with the notation of (3.1). As $(|f_\eta|^2)_M$ is a matrix coefficient of a representation in Λ, and as multiplicities for these are at most one by Proposition 3.7, we obtain that there is a real character $\chi_\pi : C \to \mathbb{R}^\times$ such that

$$\langle h \cdot \eta, h \cdot \eta \rangle = \chi_\pi(h) \langle \eta, \eta \rangle_{\pi}.$$
The group $C_1 := \bigcap_{j=1}^k \ker \chi_{r_j}$ acts unitarily and faithfully on \mathcal{M}, hence is compact. By definition $C/C_1 < (\mathbb{R}^\times)^k$, hence the Lie algebra of C is compact.

Finally, we reduce to the quasi-affine case using the affine cone over $\mathbb{P}(V)$ as before; see the proof of Corollary 3.8. \hfill \Box

Let $Q = LU$ be a Levi decomposition as in Definition 2.7 and recall the decomposition (2.10).

Proposition 4.2. The normalizer \tilde{h} of h is of the form

$$\tilde{h} = h \oplus \tilde{c}$$

(4.1)

with \tilde{c} a subalgebra of the form $\tilde{c} = \tilde{a} \oplus \tilde{m}$ where $\tilde{a} < \mathfrak{z}(l)_{np}$ and $\tilde{m} < \mathfrak{z}(l)_{cp} + L_c$.

Proof. From Lemma 4.1 we conclude that $\tilde{h} = h + \tilde{h} \cap L$, and we obtain (4.1) with a subspace \tilde{c} of $\mathfrak{z}(l) + L_c$. It is a subalgebra because $\mathfrak{z}(l) + L_c$ is reductive and h is an ideal in \tilde{h}.

Write \tilde{a} for the orthogonal projection of \tilde{c} to $\mathfrak{z}(l)_{np}$ and \tilde{m} for the orthogonal projection of \tilde{c} to $\mathfrak{z}(l)_{cp} + L_c$. Then $\tilde{c} \subseteq \tilde{a} + \tilde{m}$, and it remains to show equality. This will follow if we can show that both \tilde{a} and \tilde{m} normalize h. For that we decompose $X \in \tilde{c}$ as $X = X_a + X_m$ with $X_a \in \tilde{a}$ and $X_m \in \tilde{m}$. Observe that $ad X_a$ commutes with $ad X_m$. Both operators are diagonalizable with real (respectively, imaginary) spectrum. As $ad X$ preserves h we therefore conclude that $ad X_a$ and $ad X_m$ preserve h as well. \hfill \Box

Corollary 4.3. Let $H \subseteq G$ be real spherical. Then $N_G(H)/H$ is an elementary group.

Corollary 4.4. The normalizer \tilde{h} is its own normalizer: $\tilde{h} = \tilde{h}$.

Proof. It suffices to show that the normalizer \tilde{h} of \tilde{h} normalizes h as well. Let $\tilde{H} = N_G(h)$. Observe that \tilde{H}/H is an elementary real algebraic group; in particular, it is reductive. Thus, $\tilde{h}_u = h_u$ for the nilpotent radicals. This implies that \tilde{h} normalizes h_u and that \tilde{H}/H_u is a reductive real algebraic group. A connected group, which acts by algebraic automorphisms on a reductive Lie group, acts by inner automorphisms, hence fixes every ideal. Thus $h/h_u \subseteq \tilde{h}/h_u$ is normalized by \tilde{h} as well. \hfill \Box

Remark 4.5. On the group level, the statement is wrong. For example, let $G = GL(2, \mathbb{R})$ and $H = \left(\begin{smallmatrix} * & 0 \\ 0 & 1 \end{smallmatrix}\right)$. Then $N_G(H) = T = \left(\begin{smallmatrix} * & 0 \\ 0 & * \end{smallmatrix}\right)$. Thus $N_G(N_G(H)) = N_G(T)$ is strictly larger than $N_G(H) = T$.

Acknowledgement

The authors thank the referees for suggesting substantial improvements to the paper.

References

REAL SPHERICAL VARIETIES

Friedrich Knop friedrich.knop@fau.de
FAU Erlangen-Nürnberg, Department Mathematik, Cauerstraße 11,
D-91058 Erlangen, Germany

Bernhard Krötz bkroetz@gmx.de
Universität Paderborn, Institut für Mathematik, Warburger Straße 100,
D-33098 Paderborn, Germany

Henrik Schlichtkrull schlicht@math.ku.dk
University of Copenhagen, Department of Mathematics, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark